Graph $f(x) = \frac{x+1}{x^2}$ using the process shown in lecture and in the website handout.

SCORE: _____ / 45 PTS

The first and second derivatives are $f'(x) = -x^{-2} - 2x^{-3}$ and $f''(x) = 2x^{-3} + 6x^{-4}$.

Complete the table below, after showing relevant work (except for entries marked *). You will NOT receive credit for the entries in the table if the relevant work is missing.

★ Domain	★ Discontinuities	x - and $y - $ intercepts	One sided limits at each discontinuity (write using proper limit notation)	
×≠O	×=0	X-1NT : X=-1 Y-INT : NONE	1 X+1 = X	$\lim_{x \to 0} \frac{x+1}{x^2} = \infty$
Horizontal Asymptotes	Intervals of Increase	Intervals of Decrease	Intervals of Upward Concavity	Intervals of Downward Concavity
y=0	(-2,0)	(-00,-2),(0,00)	(-2,0),(0,0)	(-∞,-3)
Vertical Tangent Lines (x – value only)	Horizontal Tangent Lines (x – value only)	Local Maxima (x – value only)	Local Minima (x – value only)	Inflection Points (x - value only)
NONE	×=-2	NONE	×=-2	x=-3

X-INT:
$$\frac{x+1}{x^2} = 0 \rightarrow x+1=0 \rightarrow x=-1$$

Y-INT: $f(0)$ DINE
 $\lim_{x\to 0^{\pm}} \frac{x+1}{x^2} = \infty \left(\frac{1}{0^{\pm}}\right)$
 $\lim_{x\to \pm \infty} (x+\sqrt{2}) = 0+0=0$

A rectangular storage container with an open top is to have a volume of 60 cubic feet.

SCORE: ____/30 PTS

The length of the base is twice the width. Material for the base costs \$10 per cubic foot. Material for the sides costs \$6 per cubic foot. Find the cost of materials for the cheapest such container.

$$2x^2y = 60$$

$$y = \frac{30}{x^2}$$

$$C' = 40x - 1080 = 0$$

$$C = 20 \times^2 + 1080$$

$$\frac{40}{x^2}(x^3-27)=0$$

$$x \in (0, \infty)$$

WHEN
$$x=3$$
 $C=20(9)+\frac{1080}{3}=540$

$$\frac{1}{x} = \frac{1080}{x} = 00$$

THE CHEAPEST CONTAINER PEQUIRES \$540 OF MATERIALS

Prove that the equation $2x = \cos x$ has exactly one solution.

SCORE: _____/ 15 PTS

LET $f(x) = 2x - \cos x$, which is cont. + DIFF. SINCE IT IS THE DIFFERENCE

OF CONT. + DIFF. POLYNDMIAL + TRIG FUNCTIONS f(x) = -1 $f(x) = 2x - \cos x$, which is cont. + DIFF. POLYNDMIAL + TRIG FUNCTIONS

$$f(0) = -1, f(\pi) = 2\pi + 1$$

f(0) < O < f(T), so BYINT, f(c) = O FOR SOME CE (O,T)

SUPPOSE f(x)=O FOR AT LEAST 2 VALUES QLb.

BY POLLES THEOREM, f'(d)=0 FOR SOME d ∈ (a,b)

BUT f'(d) = 2+sind AND 1 \le 2+sind \le 3 (CONTRADICTION)

SO f(x) = O FOR DALY 1 VALLE OF X

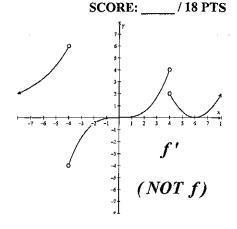
IE. 2x-cosx=0 or 2x=cosx HAS EXACTLY I SOUTION

f(x) is a continuous function whose derivative f'(x) is shown on the right.

The following questions are about the function f, NOT THE FUNCTION f'.

 $\label{eq:find_problem} \mbox{[a]} \qquad \mbox{Find the intervals over which } f \mbox{ is concave down.}$

Justify your answer very briefly WITHOUT referring to f''.



[b] Find the x – coordinates of all local extrema of f, and determine whether each is a local maximum or a local minimum. Justify your answer very briefly.

f'=0 AND CHANGES FROM - TO + AT X=0 -> LOCAL MIN f' DNE AND CHANGES-FROM + TO - AT X=-4 -> LOCAL MAX

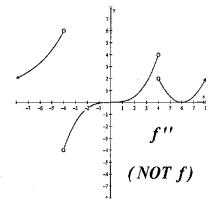
f(x) is a continuous and differentiable function whose second derivative f''(x) is shown on the right.

s shown on the right. SCORE: _____ / 12 PTS

The following questions are about the function f, NOT THE FUNCTION f''.

[a] Find the x – coordinates of all inflection points of f. <u>Justify your answer very briefly.</u>

$$f''$$
 CHANGES FROM + TO - AT $x = -4$



[b] If f'(-5) = 0,

what does the Second Derivative Test tell you about the point (-5, f(-5)) ?

Justify your answer very briefly.

Evaluate $\lim_{x\to 0} \frac{1+x\cos x-e^x}{1-\cos 2x}$ $\xrightarrow{|+\bigcirc-|}$ $\xrightarrow{\bigcirc}$

$$\frac{1+0-1}{1-1} \to \frac{0}{0}$$

SCORE: _____/ 15 PTS

Your answer should be a number, ∞ , $-\infty$ or DNE (only if the first three answers do not apply).

$$\lim_{x\to 0} \frac{\cos x - x \sin x - e^x}{2 \sin 2x} \frac{1 - 0 - 1}{0} = \frac{0}{0}$$

$$\lim_{x\to 0} \frac{-\sin x - \sin x - x \cos x - e^x}{4 \cos 2x}$$

$$= \frac{0 - 0 - 0 - 1}{4}$$

$$= -\frac{1}{4}$$
THE LIMIT IS $-\frac{1}{4}$

You wish to use Newton's Method to solve the equation $x^2 - 3 = 4x$.

SCORE: ____ / 15 PTS

If you use the initial approximation $x_0 = 1$, find the values of x_1 and x_2 . [a]

$$x^{2}-4x-3=0 \quad f(x)=x^{2}-4x-3$$

$$f'(x)=2x-4$$

$$x_{1}=x_{0}-\frac{x_{0}^{2}-4x-3}{2x_{0}-4}=1-\frac{-6}{-2}=-2$$

$$x_{2}=-2-\frac{9}{-8}=-\frac{7}{8}$$

[b] What value(s) of x_0 will cause Newton's Method to fail immediately? Justify your answer very briefly.

$$2x-4=0 - x=2$$